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DETERMINATIO& OF STRESSES AND DEFORMATIONS
OF AIRCRAFT PROPELLERS*

By Friedrich Seewald

The propeller is probably one of the most highly
stressed parts of an aircraft, It is therefore surpris-
ing that the strength of aircraft propellers has hitherto
received so little attention., While our knowledge of the
strength of airplane wings has been considerably increased
in recent years, relatively little is yet known regard-
ing the stresses undergone by aircraft propellers. It ap-
pears important therefore to give this subject some atten-
tions The incentive to the following investigation was
furnished by a series of accidents caused by propeller
failures in flight, A large proportion of these failures
occurred with a type of propeller which had a peculiar
curving shape. This propeller could not be made to fail
on the test stand, even with considerable overloading,
although a blade root of one of the propellers used was
already damaged,

At first thought this fact appears rather remarka-
ble, since the forces generated in stand tests at in-
creased revolution speeds are much greater than in flight,
In particular, the thrust forces on the stand are a mul~
tiple of those in the air., If, however, the action of the
forces on a propeller blade is more closely considered, it
is immediately recognized that the shape of the vlade has
a preponderant effect on the bending moments., The cen-
trifugal force acts lengthwise of the blade, while the
serodynamic force acts perpendicularly to it. TUnder pres-—
ent conditions of propeller operation, the centrifugal
force is one hundred or more times as great as the aero~ .
dynamic force, If the blade is not quite straight, the
points of application of the centrifugal forces to the in-

*"Beltrag zur Ermittlung der Beanspruchungen und der For-
manderungen von ILuftschrauben.," Berichte und Adbhandlung-
en der Wissenschaftlichen Gesellschaft fur Luftfahrt No.
14, December, 1926, (Supplement to Zeitschrift fur Flug-
technik und lotorluftschiffahrt.)
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dividual blade elements do not lie in a. stralght line and
consequently generate bending moments which tend to
stretch the blade. Since the centrifugal force is prepon-
derently great in comparison with the other forces, even
slight deviations from the straight line are important.

0f course it does not matter whether the deflections were
originally present or were produced elastically by the
loading, This is a well~known fact, and patents have al-
ready been granted for a propeller with blades intended
to be so shaped that the centrifugal and aerodynamic mo-
ments will just offset one another. The blade axis could
then be regarded as a flexible line on which all the
forees act instead of on a solid body. Great caution
must be exercised, however, with such propellers, ag ile
lustrated by the above—mentioned accidents,.. It is not
sufficient for oane fto have only a qualitative knowledge
..of the effect of the forces, but he must also be able to
.calculate the magnitude of the bending moments with con-
sideration of the shape. and elastic properties, The on-
ly scientific publication known to me on the strength in-
veostigation of aircraft propellers is the work by Relss-
ner, "Ueber die Biegungsbeanspruchung von Luftschrauben
und die entlastende Wirkung der Zentrifugalkraft," Tech—
nische Berichte, Vol. II, ¥o, 2, 1917, page 315, 1In this
work the elastic deflections and the centrifugal moments
due to these deflections arc determined for a propeller
which is conceived from the first as a straight untwisted
bar, for which a definite digtribution of the -cross sec~
tions and inertia moments, is assumed, Proceeding from

. similar assumptions, Wilhelm Hoff developed a graphic
method for determining the strength of propellers which
he explained in his lectures at the Berlin Polytechnie
Institute, This work has not yet been published (1927).
Baged on these works, €. Jansen undertook an investigation
on how the strength calculation of a propeller is affect-
ed by twisting the blade sections (D.V.L. Report No. 50,
Zeitschrift fur Flugtechnik und Motorluftschiffahrt, 1925,
Ppage 87)e. The assumptions concerning the shape of the
blade axis.and the distridbution of the inertia forces
along thoe blade arc ossentially the samc as in Reissnorlts
work, Since, however, for the above-montionod reasons,
even slight deviations from the proliminary assumptions
ontail considerablo changes in the’ bending moments, it

is obviously important, in propeller investigations, to
introduco the true form inte tho calculation, especially
because, in most propellers and for constructional roa-
sons, the original blado axis deviates more from a straight
line than is ascribable ‘b0 the elastic ‘deflection,
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In what follows, we must therefore regard the air-
craft-propeller blade as an originally bent and twisted
bar, which is still further elastically deformed under an
added load, The accurate solution of this problem en-
counters difficulties out of all proportion to the attain-
able results, The whole problem, however, can be greabtly
simplified.by remembering that only the excessive magni-
tude of the centrifugal force, which acts approximately
parallel to the longitudinal axie of the blade, malkes it
at all necessary to consider the very slight original cur-
vature, Hence, in determining the conditions of equilib-
rium, we will consider the total curvature (embracing that
elastically produced and that originally present) only in
so far as it involves the resoclution of the static forces,
which are so large in comparison with the others that even
a relatively small component has some effect, If the cen~
trifugal force, which is approximately parallel to the
axis of the blade, is resolved into a force lengthwise of
the blade and another force perpendicular to the blade,
the latter component is only a .small fraction of the cen~
trifugal force, Since, however, the other forces acting
in this direction are very small in comparison witihh the
centrifugal force, even this small comvonent plays a part,
Conversely, it would be useless to consider any small
component of the already small .aercdynamic force, if it
" should fall in the direction of the centrifugal force.
Moreover, since the deviations of the blade axis from a
straight line are very small (in extreme cases not over
1/30 of the blade length), the blade may be treated, with
respect to the forces perpendicular or nearly perpen-
dicular to the blade axis, as if the blade axis were
straight,

Even in calculating the internal stresses, the cur-
vature may be disregarded, and the formulas of eslementary
mechanics (for example, o = My/J) may Dbe coasidered val-
id, The resulting error is negligible since the radii of
curvature are multiples of the cross-sectional dimensioans,
Note that we are here dealing with cross sections which
are asymnmetric with respect to the axis passing through
the center of gravity and that, even in this point, the
assumptions of elementary mechanics are tuerefore not
strictly fulfilled. However, since the deviations from
symmetry are not excessive, we may expect to obtain suf-
ficiently accurate results,
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CONDITIONS OF EQUILIBRIUHM

The blade axis is the line passing through the cen-

ters of gravity of the individual sectionse It may be
any curve in space, but deviates only a little from a
-straight line. We shall establish this curve by the fol-
lowing system of coordinates, The x axis is placed in.
the radial direction so as to conform as closely as possi-
ble to the blade axis, the y axis in the direction of
fiight and the 2z axis perpendicular to both. The pos-
‘itive directions are so chosen as to form a right~hand '
systei, ' The centrifugal force then acts very closely in
the direction of the =x axis, Tho contrifugal force de-
veloped by a blade oloment of length As is designated
by AC. The aerodynamic force is assumed to act in tho
vz plane and is resolved into the components py ~end Py,
We then havo:

B 5 2 i

d[ py_dx == and d[ Pz dx x = =,

in which S denotes the thrust;..M the torgque of the en-
gine and a the numbexr of blades,

Two projections of the blade axis are shown in Fig-
ures 1 and 2., The manner of resolution then follows di-
rectly from the above statements, especially the justifi-
cation for designating the forces in the directions ¥y and
z - as transverse forces., The component in the direction
of the blade axis is designated by AN and the components
in the directions of the ¥y and z axes by AQy and AQZ,
respectively. The magnitudes of these forces are.

AC

A = Gosteny T A°

AQy = py Ax - AC cos(sy)
AQ; = py AX - AC cos(sz).

The cross section of the blade at the point x = x; 1is
acted on by the normal force

N = 3 'AC (1)

and by the transverse forces:



N.A.C.A, Technical Memorandum No. 670 5

R
. Qy = % Py AX o 2 AC cos(sy) o (2)
L QZ.——. ‘é Pz A‘X ”,: Z AG COS(SZ) S (3)

The~dom§oﬁéﬁté'of the bending moment are denoted by My
and Mgz, ~The bendlng moment My tends to produce rota-

tion .about the y axis. It is positive When the result-
1ng curvature of the blade axis is concave in the positive

direction, Correépondlng statements. apnly to Mz. The
components of the bendlng moment are:

R

Uy = [ py(x - %) dx ":f %%(V'V” v ax ()
% O I
R R

Mz = [ Pyplx - %) dx - fs.%%;(? - z1) dx (5)
X3 " Xy ' '

The torsional moment is. due partly to the fact that the
aerodynamic forcé acting on a blade element does not pass
through the center of gravity, Shifting the aerodynamic
force toward the center of gravity would require a corre-
sponding moment,.which may be designated by Mgq. The
torsional moment is also due in part to the curvatiure of
-the bPlade axis. Hence,

R au, ' . R
Mg= [ '““[cos(sx) cos(slx)] dx~cos(s1x) [ p (z~z1)dx +
X1 X1 v
o R R A
+cos (s X) J Py (v-y1)dxtcos(siy) J [py (x-x )~ Z%(y—-.vl yldx -
X1 R X1
~cos(s,z) [ [pz(x~x1)—~ éf (z-2z,)] dx (6)
X3 ot

The last two expressions represent the components of the
bending moments My and My, 1in the direction of the blade
axis, Since the torque is small in comparison with the
bending moment, these components must be taken into con-
gideration, whlle the ftorque components in the dlrectlon
of the bendlng moment may be dlsregarded.

The bending moments are the most 1mportant in the
strength investigation and must be resolved in the direc-
tion of the principal cross-sectional axes. The determi-
nation of the principal axes is gquite troublesome, TFor
practical purpeses it -suffices to take one direction par-
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allel to the blade chord and the other perpendicular %o it,
The comparison of the computed principal directions for
several blade sections with the assumed ones yielded a dif-
ference of only about two degrees, which is of no practi-
cal importance, There is naturally no objection to using
the actual principal axes in the further consideration of
the subject. They will be designated by I and II, as in
Figure 3.. The angle formed by the projection of axis I
with the 2z axis will be designated by «. This angle
is called the pitch angle and is defined by the expression
tan o = H/2nr, where H is the pitch of the propeller,
' On resolving M, and ‘M, in the direction o6f the princi-
pal axes I and %I, we obtain:

I

MI My cos o + }v'Iz Sin 64

My = - My sin a + My cos a.

The elastic curvatures thus produced are designated by
k1 and kyp corresponding to the inertia moments Jg
and Jy1, and we then have:

My 1

5T = 77 (y cos a + Mz sin «) (?)

"kI =

M 1
I1 - - M 3 M 8
T 5T ( y sin o + Mg co; o) (8)

1l

k11

If § denotes the angle of elastic distortion of the blade
and Jgq the torsional strength, the torque will be given
by the expression

Eﬁ = _-_—-Md' (9)
dx G Jga

The eurvatures k and the torque § here represent sim-
ple elastic deformations, which must Dbe expressed by the
coordinates of the blade, Heance the coordinates must be
divided, on the one hand, into those representing the o~
riginal shape and, on the other hand, into those repre-

senting the elastic deformations., The shepe of tae un-~

stressed blade axis is denoted by the coordinates

Xor Tor Zg and «,

and_thé pp:?esponding elastic deformationg by_;i,}ﬂ;
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{ and §. The variation in the length of the blade is es~
sentially represented by ¢ and is ‘so° small that it may
be disregarded,

The final coordinates of a point on the Dlade axis in
the stressed condition are therefore .

X = X9, T =¥ TNy 2= 25 + { and o = ag + 3.

The elastic curvatures k1 and k11, expressed by these
coordinates, are:

d%n a2 ¢ Mg
kp = =3 cos(ao + &) + e sin(ac + §) = = E;

. &En Lo, &t M
k1= = = sin + 3) + cos(Qg + = 11 |
II T finlao + 9) + =3 (g + 9) BT

In equations (7) and (8), the quantities My and Myy are
expressed by My 'and Mz. By introducing these values,
we obtain ' ‘

. IO~ S . o
; = &M a~ ¢ =
k1 dxz_cos(oco_-!— 3) + s sin(ag + 9)

My cos(ag + §) ¥y sin(ag + 9)

- B 77 T Jq (10)
= En .. a?
k= - E;g sin(oe + §) + €;£ cos(ay + ¢)
My sin(ag + 8) My cos(og + 9)
- (11)
B J11 EJr1
To these we must also add the egquation:
as Mg
— D i 2
dx G Ja (12)

‘For convenience the value of . Mg is not written out in
‘equation (6) The moments M“- and M, are expressed in
equations (4) and (5) by the coordinates of the blade axis
and by the forces acting on the blade, If, on the one
hand, the coordinates ¥y and z - in the equationszare di-
vided, as mentioned above, into the components y, and z,
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which determine the original form and, on the other hand,
into the components m and ¢ which denote the elastic
deformations, equations (4) and (5) then become

R - N
My = / py(x - x) dx -/ A2 (75 - 7o,) dx -
X3 X3
}
"xfl" Az (M= M) &= (13)
R R
My = [ py(x - x;) dx - /‘;AQ (29 - 2Zp1) dx -
X1 x, O
R AC .
“x{ Ax (ém" ¢1) dx (14)

These values must be introduced into equations (1L0) to
(12), in order to obtain the conditional equations for the
elastic deformations in teras of the blade form and of the
acting forces. In equations (13) and (14) the first two
integrals represent the moments which would be produced by
the forces acting on the unbent blade. These can be cal-
culated directly. The last integrals in the equations for
My and Uz contain the change in the moments due to the
change in the shape of the whole blade under stress and
the consequent variation in the points of application of
the forces. The nature and magnitude of these deforma-
tions can be represented by exponential series and write
the expressions:

’n = ao + a..lX + azxz + a3X3 + c-c'.'n‘o
¢

¥ = cCo + C1X + 22X + c3X% + ..ie..

it

bo + bax + D2x® 4+ b3x® + L.....

We calculate with these expressions as if they were known
quantities, leaving the constants a, b, and ¢ to be sub-
sequently determined ‘8o that the actual deformations will
be represented as accurately as possible by these series.,
If we introduce these series into eguations (10) to (14),
we can calculate all unknown quantities as functions of a,
b, and e¢. If we compute gumerically the quantities in
these equations for any values of x, we obtain, for each
value of x, three equations in which only the guantities
ay, b, and ¢ occur as unknowns, If, for example, wo wish
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to consider the first three terms ¢f each series, we must
compute equations (10) to (14) for three values of x and
thus obtain nine -equations for the nine unknowns, In this
general form the solution would still be very troublesoms,
because all the unknawns occur -in every ‘equation. This:
difficulty is remedied as follows, We first assume that

4 = 0, leaving only 0o, in the angular functions, i.e.,,
the original twist., Furthermore, we put kyy = 0, This is
justified by the fact that, in propeller sections, the in-
ertia moment Jy7 i¢ always much larger than Jj. It
will appear later that both § and kjy are actually so
small that they can be put equal to zero in the first ap-
proximation, Equation (11) then becomes ' '

2 2
kII = - %;9 sin Qg F %;é cos Qg = c - - (15)

On multiplying this equatibn:bﬁ sin‘do' and subtractlng
it from equation (10) multlplled by cos gy in which
likewise § = 0, we ootaln

1,
Bt

2
4n - (My cos® Qo + Mz sin Q.cos-0g) . (16)
dx= S . ‘

‘The only other gquantity now appearing on the left side is
the second differential coefficient of m. The right side,
however, contains, in addition to M, as follows from
equation (5), also { in- Mz. By assuming ki = 0, we
can also. express [ as a function of . m and. therefore by
O« -Bquation (15) then yields ‘

2 2
g:_g- - Q..'ﬂ tan a'
_ax®  dax?

As. already exPlained a is the piﬁch angle and conse;
quently, :

‘taﬁ o = L
21T x

For most propellers the piteh H is approximately constant
over the whole blade. Where considerable deviations occur,
tan o should be etpressed approximately by a correspond-
""" and the procedure should then be exact-
ly as followss ,

oK
dx® dx® 2 11 x an
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For .m we developed the"éﬁpﬁession
M= 8o kB X f 8y%% 4 83%% 4 aiaadl.
We can. immediately put ag = a; = 0, 'becauééAtﬁe,blade

may be regarded as fixed at the hub, so that 7 and dn/
dx - must -vanish for =x = O, Hence,. ' o

%;ﬁ %'2'a2 + 6 azx + 12 a4x3;¥4é0"a5x3 F oeeeaes

By 1ntrodu01ng this value into equatlon (17), we obtain

az¢ - (2 a. +6 a.x + 12 & x3'+ 20 asx® + . B
dx® z s N ° ) 21T x

¢ can now be computed by integration.

%é = (2 az 1n X + 6 azx + 6 a,x® +
B

20 =
+ 217

—'g'asxa-!-lo.c.) +C1

d¢/dx must equal zero for x = O, which is possible only
when a, = C, = 0. By another integratlon, we obtain

4 - B

= (3 azx® + 2 a,x® +-§ agX +i,:fﬁ;f)‘5;‘;:;._17a)
Now all the quantities in egquation (16) can be expressed by
Ne From this equation we then calculate an approximate
value for m and simultaneously also for « We can then
compute all the bending moments. At first these values
are only approximate, Iy the numerical example, however,
it will be found that the assumptions kyr = 0 and § =0
are so accurately fulfilled, that the values calculated oa
the basis of this assumption may be regarded as final,
Should this be otherwise in particular instances, the val-
ues may be corrected hy introducing the calculated approx-
imate values ¢ and ky; and making the calculation again.

Hence the problem is to determlne the constants a
of the series L ,

‘r‘.: aeza + a4x4 + asxs + ".Qi‘»""

in such a way that equation (16) is satisfied for as many
values of x as there are terms in the series for n.
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We break off the serieg for m with the third term snd
find, as the first condition, that all moments become zero
at the bplade tip, including also the curvature d®n/dx?,
The other two conditions are determined as follows,. If

an assumed function is correct, and the bending moments on
the right side of eguation (16) are calculated, these bend--
ing moments necessitate certain definite deflections, - If
these are calculated, they must equal the assumed values.
of M at every point, This condition cannot be realized
at all points, but at as many points as there are terms

in the series., Since we have not yet had over two con-
stants, we can. satisfy this condition for only two points.
We arbitrarily stipulate that the deflection at the blade
tip and for =x = 0.6 R ~shall be the correct one. We have
then represented the deflection by an approximate function
which agrees with the actual bending line under the follow-
ing conditions., At the hub it is fixed, while it has the
correct deflection for =x = 0,6. "~ At the blade tip 1t has
the correct deflection and the correct curvature., It may
be assumed that such a function, which satisfies five
boundary conditions, will not deviate greatly from the cor-
rect curve, As conditions for the last two constants, it
was stipulated that the deflections and not the curvature
should agree at two points. If the curvature had been
chosen, then two conditions for the constants would have
.been obtained, The result would still have been very in-
accurate, principally due to the fact that, on the right
side, only the inertia moments were introduced at the two
places., As a result of the double integration of /87,
however, the magnitudes of the inertia moments and cross
sections were indirectly taken into consideration at all
points by means of the deflections.

NUMERICAL EXAMPLE

The process of calculation will be illustrated by an
example, taking the propeller described in the introduc-
tione It will be found that the stresses in flight, espe-
cially at high speeds and therefore at low thrust, are
considerably greater than at the same revolution speed on
the stand. The propeller used in the tests was of this
type with a diameter D = 2,45 m (8,04 ft,.,) - and a pitch
E= 1,15 nm (3,77 ft.)e It was tested on the stand at 1450
Trepele and yielded a thrust of 325 kg (716.5 1b,) with an
engine torque of. 47 m-kg (340 1b.-ft,). The stresses were
determined under these conditions. The propeller was run
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at a gspeed of 1700 r.pe.me on the stand without injury.

‘The propeller-blade sections were 10 cm (3 94 in,)
apart, In Pigure 4 the cross-~sectional area is plotted
against the radius. The c.g. of each measured section was
found and the coordinates y, and z, of. the blade axis
were determined, The blade~axis curves are shown in Fig-
‘ure 5, TFigures 6a and 6b show, respectively, the sine and
cosine of the angle made by .the blade~section chord with
the plane of the propeller.,. Figures 7 and 8 show,.re-
spectively, the inertia moments Jj and Jr7 at each point

of the blade (Jy; on ten times the scale of . Jy)., All

these gquantities are plotted against the nondimens1onal
abscissa ¢ = x/R, :where ‘X represents the dlstance of
a cross section from the center of the hub.

Equation (16), when the above~given serles and the
substitution - £ = x/R:. are introduced for M and { with
cons1deration of equatlons (15) and (14), tales the form

S osiHle e REPH0 aRoets SEHLF , py(t-ty )ab-
=l AC. j 3
- - , cos?a 3 3 _
EfE 5 (yovym).az} spetaf zlA%[R ag (¢ £,%) 4

i

FRéa, (8% -6 *)+R%a (£5-£5) ] at

+ mgg&g{a = pz(i £,)at- f %'g (20"201)‘15}
1

E J7
gg - A
_ singa cos c [0, 55 -
R Ef€1 2t L RPas (£ -6+

4. . .
40,366 R%a (£°~£,°)+0.305 B as (£°-£,") Jat (18) . -

- .
.- P S SPU
-
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In order to determine the deflection itself, it is neces~
sary to integrate twice, whereby it must be remembered
that o and J are functions of §¢, All the terms on
the right side can now be computed. However, the integra-
tions cannot ail be computed since o, J and the centrif-
ugal: force at each point are not all giyven in_terms,of_ﬁi,
but take a course which can be determined only by measure-
mentss All these expressions are therefore obtained by
summation, The distribution of the asrodynamic forces is
approximately known, For the strength caltculation, it
suffices to approximate them by a simple function. For
example, the component forces which produce the thrust,
may be assumed to have a distribution which is approxi-
mately represented by the function

.,P:f:k‘iz«/l -

The constant kmﬂmuét be so determined that the sum over
all the blades will give their total thrust. It must
therefore be

L1 - ,

SRS ,.-' . -‘?2 . —”-—’“’a* - §

- ofkg/l-.nggg._a
where & i1is the fluld coefficient, whence

x = 1685
o 1T R

The bending moment due to the thrust is therofore casily
calculated. At the point ¢ = §, it is

A £=1

~p2 f _ I 2 [ 42 e ,
MS-Rz._/___gle(i £.)at R nng.f—_élg 1-£7 (¢ il)di

Aftor integrating and again replacing £, by €, we ob-
tain ‘ ‘

E’ .
Ms=1553[’“ L=bo (6 t* +7 £7 +16) -
o .80 T T .
1 T ;
8§<2 arcs:tnf.)]
Hence the 'moment expitéd by the thrust is

g =S Ry,
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in-which the-brécketed.forfggg of'thé'prééé&iné‘formula is
replaced by f(g);‘;This function'hasvthe values:
g—'—==o.f.01 0.2 os . 046.. 045 046 o'r
f(E) =0, 133 O 114 O. 094 0.075. 0, 057 O. 040 O, 0255 O 0139
S Tk = 0.8 0,9 " 1,0
- £(t) = 0,0056 0.0011 O
The aerdd&ﬂamlc comp&uent éc€1ng in the plane of the pro-

peller disk is represented accurately enough by the func-

tion 5z
Pz=kl€ 1“&

We again determine‘ -] that the total moment exerted
by py; is equal %o t%e measured or calculated englne

torque.
; N _ 1 g =
oS FEa =k B SE /187 ek =
o , .
Hence .
My 16
= =-B? ﬁ a
" Mp 16 —
N AR

Then the bendlng moment due - to this aerodynamic component
at any point ¢, is

f=1 . IETE
U= Ly palt-tdels o=, B/ - P E-Gat
Mﬁ io [g (2 & 8 ,) - % arc sin { +
t - /TP =B,

For abbreviation the bracketed portion is replaced by
p(f). It has the following values:
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tE =0 0.1 0.2 0.3 Q¢4 : 0.5 - 0,6
@ (£)=0,1962 0,163 0,1312 0,106 0.073 0.0502 - 0,051
£ = 0,7 0.8 0.9 . 1.0 .
@ (£).

it

0,0167 ° 0,0044 00,0014 0

Tith these the bending moments due to the aerodynamic
forces are determined, Their curves are plotted in Fig-
ures. 9 and 10, We now have to determine the moments due
to ‘the centrifugal force and first those due to the orig-
inal curvature, These bendlng moments are represented

by the expressions:

T o
b AC (yo - Yo1)AE and Z (20 - zol)AE
gzilzf = $1 Az

The quantities yo ~'y, and 2y ~ z; can be read from

Figure B for any value of £.

. If we imagine the blade divided perpendicularly to the
. ¢ axis into disks of the thickness 1 cm = Af, then the
. centrifugal force per unit length is ACﬁRAZ ' '

A R £ w?

c L
FAE T g

The. specific ?ravity of the wood is assumed to be 0.8 or
800 kg/m® (28 or 28250 cu,ft.). At 1450 r,p.m. * =
23000. 1In .order to: obtain AC/AE we must. therefore mul—
tiply the curve, which indicates the cross—-sectional ares,
by the factor

'YU_)QRE_.8OOXBSOOOX%L_925&..2295
g 9.81 X 100

This centrifugal force per unit Léngth of the blade is plot-
ted in Pigure 11. TFor the calculation, the blade is di-
vided into .sections by ten planes perpendicular to the ¢

axis at intervals of. AE = .l. In order to determine the
ceqtrifugal'Lorce of every suca portlon, we must. determlne
the surface area of. the. curve AC/Rbﬁ 1gure 11 between

the limits ~{ and. i + MNEs We may concelve of such a por-
tion Wlth suff1c1ent accaracy as a trape201d a's ‘shown 1n
Pigure 11. ‘The point of appllcatlon of "tHis" centrlfug%1
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force to the blade then 1ies at the.value-of ¢ whlch cor-
responds to the ce.g. of this surface strip., In what fol-
lows, however, .it is more-coavenient to resolve this forée
in‘such a way' that all the components are applied at

£ = 0.1, 0.2, etc, This resolution can.be made by apply-
ing half of ﬁne area of the hatched rectangle in Figure

11 to each of the .two points £ and £ +w £, and 2/3 of
the area of the triangle to one point and the remaining
1/3 to the other point. The centrifugal forces for all
the blade elements werle “thus determined,

£ = 0 0.1 0u2 043 0¢d 0,5 0,6 047 048 049 1,0
56 358 769 1081 1207 1225 1216 1140 949 602 110

For determining, at the point §, the bending moment due
to these forces, we have the express1on

g_
et AL

The simplest way to solve sucn an expr6551on i8 by u51ng
the formula,

é{ (Fo = ¥o1) At or AG (2 = Zgy) A€
i Zn

n=1

g
Mp = Mp-1 + A Yon % Ak %g-

Ayon and Azgn are to be taken directly from Figure 5,
vhere the original blade form is plotted, The moments
Mcyo apd - Mg,, thus obtained are plotted in Figures 12

and 13, We are now in positlon to solve a portion of the
right side of equation (18), namely, the expression:

SO82% 82 [ py(t - ) 4t = S B (yo - you) A£] +

. B Jg AT -
21842080 (8% / py (¢ - tat -/ &% (20 = z01) at]

The bracketed expressions have already been solved and
represent the bending moments-due to the action of the-
aerodynamlc and centrifugal forcées on the unbent blade.
The angle .a and the inertia moiient "J are measured at
each point, E = 100000 kg/em? (1420000 1b,/sq.in.) was
adopted as the elasticity modulus of wood., This whole ex~-
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pression has to be integrated twice, in order to obtain

the deflection, which would be produced by the bracketed
moments, A double integration is equivalent, however, to
the production of a moment according to Mohr'!s theorem,

The gquantity represented Yy the above expression may there-
fore be taken as the load applied to a blade, from which
the bending moment can be calculated, The evaluation can
be made exactly as in the above., determination of the bend-
ing moments. The result is plotted in Figure 14, The
guantity, calculated as -a bending moment, is designated

by TNy and represents the deflection produced by the
above~calculated moments, when the moments remain constant
during the deformation. _Ihe two still-unsolved expressions
in equation (18) T ’

JAG IR ag(e®- &) + F e (£~ £ + 2% ag(€- (0] 4t
and [ 49 [0.55 8% ay (£~ £7) 40,366 B au (- &) +
+0,305 B ag (£ - £,% 1a &,

represent only the moments which are first produced by the
elastic deformation and which overlap the above-calculated
~moments,

We will now continue with the terms centalnlng the
constant az. On exiracting these terms we obtain the two
expressions:

ag R® S %% (8 - £,°) a ih

0.55 a5 R f %—% (4% - £.2) at.

Orly known quantltles stand under the 1ntegratlon signe.
These can therefore be calculated by summation for any de-
sired value of 23, the calculation being made the sawme
as for the previous quantltles,' as

—ﬁ—% (o - ¥o1) 4%
Both integrals represent functions of ¢,, which can be
directly computed and which we will represent by ¢ (§)

and Y (&). s P(€) and 0,55 ag w(;) then represent the
bending moments produced when the blade is bent into the
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form M.= as £ . By introducing. these quant1ties intov
equation (18), we obtaln :

o as [§°§? @(i) ¥ 0, 55 iiaﬁ_£§~@ W(Eﬂ :

as the component of the bend produced by these moments..
Again considering the bracketed expressi on as the load and
having determined the bending moment, the latter. is equive
alent in magnitude to the deflection produced by the mo-
ments () amd 0,55 Y(f) in the vy ‘direqtion. This
deflection is designated by Ms. The procedure is the
~same with the terms .a, and ag, and the corresponding
deflections are represented by mMa and Mse "

- All these deflections are plotted in Figure 15 on a
magnified scale o6f 1000:1, The total defleéection is then
equal to the sum of all the individual deflections, so
that the equation must be satisfied for every point £,.

m=ag R® {,3 + a, B* £ + ag R® £,° =
T Mo(8a) T B Mg,y F 8 N (g)) T e Ng(ty)
As zlready explained, we put £, on the left side, once
€, 7046 and. once ,El = 1, while we introduce the calcu-
1ated deflectlons . Mos Ma» Ma and Mg ‘on the right side,
Thus we obtain two equations for the constant’ a. For
the third equation, as already mentioned, we choose the
condition that, at the blade tip (tnat is, for ¢, = 1),
all moments equal‘zero, so that dan/di aust vanish,
Thus we obtain the three esquations:
1.225X1 + 12 aq 1.225° + 20 ag 1,225% = O
1000 (as 1.225°X0,6%+a, 1.225%X0,6%+a; 1.2255X0,65) =
=1 ,473-a; 250,16-8, 254,7-a5 247.6
1000 (ay 1.225%+a, 1.225%+a; 1,225°%) = 13,126 -
-85 854,9-as 924-as 1062.6.

Thesefeqdétions yield, fbr;thg‘ a ¢onétaﬁpa the values .
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az = -0.017555

]

a, = +0.036033

“O 001414

as
Hence the total deflection is

m = asRE° + a,R¥E* + agR®E®= -0.01755x% 1.225% 3 +

+ 0.03603 x 1.225% ¢* - 0.01414 x 1.225°% ¢°

According to equation (17a)

_ 2 .2 3 .3 5 4 .4 H
{ = (3 ez £ R +2a4 7 R + zas £ R 5=

The quantities =n and ! are plotted in figures 16 and 17,
from which it is obvious that the calculated deflection ¢
igs very small as compared with the deflection in the ¥y
direction. The shape of the propeller, after its defor-
mation, is now known (fig. 18), and all moments can be
calculated by equations (4), (5), and (8). The bending
moments for az = 1, a, = 1, and ag = 1 have already
been caleculated, so that we only need to multiply them by
the computed values of a. The moments My and Mpy can

then be readily calculated from the individual expres-
sions. Likewise the stresses can be directly calculated.
The results are plotted in figures 19 to 22. The bending
stresses due to My were also calculated, though they
are so small, due to the magnitude of J,, that they

play no part, all the more since the maximum stresses due
to Mjpy occur in the fibers where the stresses due to

M1 are almost zero. Since all the quantities are now

known, the calculation of the shearing stresses can like-
wise be made as for ordinary beams. These stresses also
are not very important, The torsional moment can be read-
ily calculated from equation (6). It is so small, however,
that it is of hardly any importance. It is plotted in
figure 23. All these guantities are now calculated on the
assumption that the curvature in the direction of the
greater inertia moment and the elastic distortion of the
blade are both negligibly small. In order to determine
how far these conditions are satisfied, we will now cal-
culate them. Since the magnitude of a distortion for any
given cross section is very difficult to calculate, every
cross section is replaced by an inscribed rectangle. The
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torsional rigidity of such a blade can then be determined
according to St. Venant and is surely less than that of
the actual blade. Likewise the modulus of shear G is
assumed very low, G = 8000 kg/em? (113800 1b./sg.in.).
Under these assumptions, we have, at the propeller tip, a
twist of & = 0.00661 or about 0.3°. This angle, howev-
er, is within the degree of experimental accuracy. The
torsional angle might be someowhat greater for other blade
forms. Nevertheless, it would hardly reach values which
would affect the strength relations.

In order to test the other assumption ki = 0, we
w1ll conmpute kyy; and compare 1t with kj. These quan-

tlties are calculated for a few values of ¢ by forming
the expressions Mp/EJ; and Mpp/BJry. .

¢ kI-J kII

= 0.2 ~-1667.0 +29.2
= 0.4 +2620 ~17.4 |
= 0.6 +5140 ~36.8

= 0.8 +4430. -20.0

It is obvious that kg is nmuch-smaller than ky: . &t the
most unfavorable point (€ = 0.4), ky; = 0.0175 kj. It

seens perfectly permissible, however, to disTegard such

a snall quantity. This proves that the assumptions kp =
0 and 3 =0 do not greatly impair the value of the fi-
nal result, so that we may regard the calculated gtatic
data as correct.

_ It is obvlous from the course of the bending moments
and stresses that the nmoments due to the centrifugal
forces preponderate, even at the great thrust on the stand.
"The blade is bent backward a2t the root even at great
thrust. It is therefore of interest to know the bending
nonents when the thrust is small. It is therefore assumed
that the propeller runs-at the same speed as above (U =
1450 r.p.n.) when it exerts no thrust at all. This is

a condition which can easily occur in flying at a low an-
gle of attack 'and with the engine throttled. If all the
aerodynamic forces are put equal to zero, the calculation
is greatly simplified, since all the data required to
‘solve thée equations have been previously determined. It
is only necessary to put all expressions involving aero-
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dynamic forees equal to. zero. The calculation,.ig then '
made exactly as before. Since it affords nothing .new of .
interest, only the restilts will be given. The stresses -
are plotted in Figures 24 and 25 and show- that, near the.
blade root, they are considerably greater than in the pre-
vious condition, where the aerodynamic forces. act. This:
is also quite natural, for even in the previous loading:
case, where the aerodynamic forces tended.to bend the - -
propeller forward, the opposed "relieving" moments, whieh
are produced by the centrifugzal force due to the curved
hape of the blades, so far exceed the aerodynamic moment,
that the resulting moment is even greater than the moment?t
which the aerodynamic force alone would exert on a -
'stralght blade., In normal flight, however, the aerody-
nanic forces are cons1derably smaller and they may almost
vanish when the airplane -is . in a glide. The aerodynamlc-
force then produces a backward~oendlng moment, which is
.much greater than the aerodynamlc forces could produce,
even in the most unfavorable case. The blade tends of
itself to assume such a position that the effect is mine-
imized., The blade can undergo important deformation,
however, only in its outer part, where the cross sections
are smalle. Near the hub no considerable deformation can
occur, unless the stresses are very high.. The calculated
stresses never suffice, however, to cause certain fail-
ure, even when they are dangerously high, It must be re-
'membered however, tnat the conditions may becoms consid~
erably more unfavorablerthrough some small material.de-
fect, such .as may be produced by the weathering of a glued
Joint.. Further cons1derable stresses may be produced -
by even small vibrations. The previously mentioned fai1~
ures occurred mostly in large propellers, which were sim-
lliar in shape, however, to those investigated here, In
sQ far as known, all the failures occurred in flight, 1.6.,
at low thrust, as might be concluded from the present in-
vestigation. The cause of the failures, therefore, was
probaoly excessive curvature. of the blades. N ‘

"Hence great ca utlon must ‘be - exerc1sed in trylng to
give a propeller such a shape that the aerodynamic forces
will be counterbalanced by the centrlfugal forces. It
seems particularly hazardous to let the blade axis near
the hub project too far from the nlane of the propeller
disk, The effect of a faulty shape is not so detrlmental
in the outer portion of the blade, due to its fleX1b111~
ty, which partially remedies the defect. Near the nub
however, due to the great rigidity, no considerabls: auto-
matic: adgustment is DOSSlble, and the moments are greabw-
1y affected by the original design, It is 1mp0531ble to
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establisn any general rule for . the design._ It may, how-.
ever, be said.that, in the case. 0f a blade having a . )
straight axis, . the elastic deformatlon is always such

that the load is, actually reduced by the oentrlfugal force,
regardless of all other forces acting on the- propeller.
This fact was also demonstrated by Relssner. For a curved
blade this is not the. case, . In any. ‘event it should be de-
termlned whether the load: reductlon under. one operatlng
conditlon does not 1nvolve a load increase under anotner
operatlng condition, '

The propeller blade has thus far been cons1dered as.
a thin.plate. This was accurate enough- for the quantltles
hitherto colculated This assumption causes the complete
disappearance of one factor, which .should be comnsidered
in many casese Thls is the torsional moment exerted on
the twisted blade. by the. longltudlnal force. . If, for ex-
ample, we imagine a metal .strip twisted about 1ts longltu-
dinal axis so as to form a helical . surface, and, if this
strip is then sub;ected to longltudinal tension, it will
tend -to return to its. original flat shape. In. order to
determine these moments approx1mately, sach fiber nay be_
considered as a twisted blade...When this is pulled it
will tena to untW1st. The. longltudlnal stress in each fi-
ber is known accurately anough from the prev1ous calcula~
tion. . Due to the twist, .the longltudlnal direction. con-.
tlnually varies along the fiber. There must therefore be
everywhere a component perpendlcular to the fiber, and
this produces a backward turning moment. In thick propel—
lers, such as those of wood tnls moment is unlmportant :
but in very thin blades it may. assume great importance .
and cause .considerable dlstortion. .For the approximate
calculation of this. torsional moment in a thin propeller
"'blade, it is sufficient to take account of the centrifu-
gal force alone (assumed to be uniform throughout the
cross seotion), since, due to its slight rigidity, the
blade automatically takes such an attitude that the bend-
ing stresses are small. If the angle through which a sec-
tion is twisted w1th respect to the precedlng section is
measured at definlte intervals of 10 cm (3.94 in,), for
examole, this angle is then a criterion for the bending
of .the . 1nd1v1dual fibers. The components of the internal
forces, Droduolng the tor31onal moment, can then be read~
ily determined from the change in the . dlrectlon of the
flbers. :

) Various tests were made in order to determine the
deformation of the propellers experimentally. Though all
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these tests were of a rather
still possible to verify the
arrangements tested, (Figs.
tour of a blade of the above
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primitive nsture, it was .
calculation with one:of the
26 and 27,) The whole con-
nathematically investigated

propeller was lined with spark gaps by attaching strips

of tin foil 2.5 cm (about an

inch) long. One end of this

conductor was coanected with a condenser by means of a
slip ring with brushes, while the other end consisted of
a noint which passed a stationary point once during every
revolution at a distance of about 2 mm (0,08 in.,), the -
latter point being connected with the opposite pole of

the condenser,

The energy was so adjusted that a spark. .

could pass only when the revolving point was exactly oppo-

site the stationary point.

The condenser was charged by

an induction coll operated by an alternating current.

‘First, . in order to determine tﬁe,éhape of the propel-
ler in the unstressed condiftion, the blade was turned to

the position,where the spark

could pass., A photographic

camera was then mounted in the plane of the propeller
disk in such a way that the axis of the lens was approxi-
mately perpendicular to the axig ¢of the propeller dlade,
and a spark was discharged through the spark gaps and

was photographed,
position,
1450 r,pem,
plate.

The canera
while the propeller
another spark was
In order to make sure
spark gaps were also arranged
In this way Figure 28 was obtained,
thus be determined with great accuracy.

was then left in the same
was made to revolve., At
photographed on the same
the camera had not moved,
at two stationary points.
The deflection can
A twisting of

the blade, which would be indicated by changes in the dig-
tances between the sparks on the leading edge and those

on the trailing edge while the propeller is revolving,

as

compared with the distances between the same sparks when
the propeller is at rest, can indeed be detected, but it

is so small that it gannot be accurately measured,

A

twist of one degree would cause a relative displacement
of the points of 1.5 to 2,5 mm (0,06 to 0,1 in.) accord-
ing to the width of the blade at the point investigated,

The deflection is readily recognized, however,
well with the above calculation,

and agrees
At the blade tip the

measured deflection is 10,6 mm (042 in.), and the calcu-

lated deflection is 9.7 mm (0,38 ind).

The goeneral char-

acter of the measured deflection agrees well with the cal-

culated deflection,
the hub is recognizadle,
of this method of wmeasuring,
with the propeller at rest,

Even the negative deflecition near
In order to test the accuracy

the sparks were photographed
The blade was then distorted,
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and the defled¢tion was ‘accurately measured.at several
points, Then another photograph was taken and evaluated,
It was thus found that deformations of 0,5 mm (0.02 iny,)
could be datermlned o B o

SUMMA32.<¢ﬂw 

“A method is described for testing the strength of
propellers of any shape., It is.shown that the shape of .
the propeller greatly affects the stresses, and that great
caution must be exercised if the relieving effect of the
centrifugal force, which exists in every propeller with
a straight blade axis, is to be .increased by curving the
blads axis, : - e

In a numerical example, the calculation . is made for
a certain revolution speed at which the .actual distortion
ig then measured, The results of the .calculation agree
satisfactorily with the experimental results,-

Translation by Dwight M. Liner,
National Advisory Committee
for Aeronautics.
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